AI颠覆药品研发,也可以颠覆电池?

AI通过模拟计算在数十亿个材料组合中快速筛选出最优的候选材料,或者,直接设计出针对特定电池的全新材料。

生成式AI技术的应用正在各行各业崭露头角。在医药领域,凭借AI强大的算力,药品研发近几年的效率大幅提高,成本显著降低。

上月英矽智能旗下第一个由AI研发的小分子药物以8000万美元高价授权给制药公司Exelixis,标志着AI药物研发降本增效过程中的重要一步。

相似地,在电池材料研发中,AI也发挥巨大作用。

研发人员输入对电池性能的要求,AI通过模拟计算在数十亿个材料组合中快速筛选出最优的候选材料,或者,直接设计出针对特定电池的全新材料。

传统电池电解质发现的难点

目前商业上可获得的候选分子达100亿之多,如果考虑5个为一组——电池电解质材料中的典型组合——那么组合数量将达到10的47次方。

换句话说,就是很多很多。

所有这些组合对电池研发都很重要。只要研发人员找到正确的电解质材料混合物,就可以为电动汽车、电网甚至电动飞机制造出充电速度更快、密度更高的电池。缺点是,与传统药物研发过程类似,找到正确的配方可能需要历经十多年和成千上万次失败。

创业公司Aionics的创始人表示,他们的AI工具可以加速这一过程。

Aionics联合创始人兼首席执行官Austin Sendek在最近的达拉斯UP峰会上对媒体表示:

问题是候选太多,时间却不够。

当电解质遇见AI

锂离子电池包含三个关键构建块分别是两极电极和电解质:一侧是负极,另一侧是正极,电解质通常位于中间,在充放电时移动在电极之间传递离子。

Aionics专注于利用AI工具包来加速电解质的发现过程,最终提供质量更高的电池。这家成立于2020年的初创公司,迄今已融资350万美元,包括来自UP.Partners等投资者的320万美元种子轮融资。

目前,Aionics已经与保时捷电池制造子公司Cellforce、储能公司Form Energy、日本材料和化学制造商昭和电工(现为Resonac控股)以及电池技术公司Cuberg建立合作伙伴关系。

Aionics研发人员利用AI加速的量子力学,可以在现有的数十亿已知分子数据库上运行试验。

Sendek说,这使他们能够每秒筛选1万个候选分子。该AI模型学习如何预测下一次模拟的结果,并帮助选择下一个候选分子。每运行一次,就会生成更多数据,并在解决问题方面变得越来越强。

在某些情况下,Aionics已经通过将生成式AI引入其中将这一过程提升到了一个新的层次。与依赖数十亿已知分子不同,Aionics从今年开始使用在现有电池材料数据上训练的生成式AI模型来创建或设计针对某一特定电池的新材料。

Aionics通过使用卡内基梅隆大学加速计算电化学系统Discovery项目组开发的软件,来优化发现过程。另外该公司还开始使用基于GPT 4构建的大型语言模型(LLM),帮助研发人员在工具开始运行之前就将可能的配方减少数百万个。

Sendek解释说,GPT-4经过了Aionics的化学和科学论文训练,不能用于实际发现,但可以用来排除某些无用的分子。

在候选分子从数十亿缩小至几个后——或使用生成式AI模型设计出来之后,Aionics会将样本发送给客户进行验证。

Sendek说:

如果第一轮没有成功,我们会迭代,并进行一些临床试验来证明,直到找到最佳候选分子。一旦找到优胜者,我们将与制造合作伙伴合作,扩大其制造规模并推向市场。

风险提示及免责条款
市场有风险,投资需谨慎。本文不构成个人投资建议,也未考虑到个别用户特殊的投资目标、财务状况或需要。用户应考虑本文中的任何意见、观点或结论是否符合其特定状况。据此投资,责任自负。